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ABSTRACT 

The recent proof by Bigelow and Krammer  that  the braid groups are 

linear opens the possibility of applications to the s tudy of knots and 

links. It was proved by the first author and Menasco tha t  any closed 

braid representative of the unknot can be systematically simplified to a 

round planar circle by a finite sequence of exchange moves and reducing 

moves. In this paper we establish connections between the faithfulness 

of the Krammer-Lawrence representation and the problem of recognizing 

when the conjugacy class of a closed braid admits  an exchange move or 

a reducing move. 

1. I n t r o d u c t i o n  

The goal of this article is to study some problems in algorithmic knot theory 

with the use of new tools. Our work will combine two threads of thought: 

�9 The first author 's  work with Menasco on the study of knots via closed 

braids. 

�9 The work of the second author, who proved that  the faithfulness of certain 

matrix representations of the braid group rested on whether the matrices 
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in question effectively detected intersections between certain arcs on the 

punctured plane and their images under braid homeomorphisms. 

Let ~ be an oriented knot type in oriented 3-space S 3, or alternatively in ]~3. 

A representat ive/(  E ~ is said to be a closed b ra id  if there is an unknotted 

curve A (the b ra id  axis), which we shall think of as the z-axis in I~ 3 , and 

a choice of fibration of I~ 3 - A by half-planes {P x {t}, t E [0, 1]}, such that  

whenever/22 meets a fiber P x {t} the intersection is transverse. This implies 

that  /~" C (Ii~ 3 - A). The b ra id  i ndex  n = n(/22) is the number of points in 

/~" M (P x {t}). This number is independent of the choice of t E [0, 1], because 

is transverse to every fiber P x {t}. Two closed b r a i d s / ~ , / ( '  C (I~ 3 - A) 

are equivalent if there is is an isotopy ~: (II~ 3 - A) x [0, 1] --4 (It~ 3 - A) with 

~(K,  0) = K and ~(R,  1) = / s  and each ~( / ( ,  s) a closed braid. Cutting I~ 3 - A  

along any half-plane P x {to} we obtain a b ra id  K.  Two open braids obtained 

by cutting along the same half-plane P x {to} are equivalent if there is an isotopy 

as above which is the identity on the cutting plane. 

Open braids are in 1-1 correspondence with elements in Artin's braid group 

Bn and closed braids are in 1-1 correspondence with conjugacy classes in B,~. 

The open braids obtained by cutting along distinct planes are conjugate in Bn. 

We now define what we mean when we say that  the conjugacy class of a closed 

braid K 'admits a reducing move'. An example is given in Figure 1. The plane 

P x {0} meets/22 in n points q l , . . . ,  q~. These n points divide/~" into n arcs 

a l , . . . , a n ,  where each ai C / f  begins at qi and ends at some q,,. Then /~ 

a d m i t s  a b r a i d - i n d e x  r e d u e l n g  move  if for some i E {1 , . . . ,  n} there exists 

an arc 5 in P x {0} which joins qi to q,~, such that  the closed curve aiUSi bounds 

a disc A which in tersects / (  precisely in the braid strand ai. See sketches (a) 

and (d) of Figure 1 for an example. The caption describes the example in terms 

of the standard elementary braid generators a l , . . . ,  a~- i  for B~. 

If one deforms 5 in P x {0} to 5 ~, where 5' has a point on A, as in sketch (d), 

then 5' will sweep out the disc A as it is moved around the axis, keeping one 

endpoint fixed on A and sliding the other a long/~  to fl(5'). Thus, if 5 exists, 

then the closed n -bra id / : / can  be replaced by a new representative of the same 

knot type, /22 - ai + 5, by pushing ai across A to 5. Moreover, after tilting 5 

slightly to make it transverse to the fibration, the modified representa t ive/~ 

will be an (n - 1)-braid representative of the same knot type. See sketch (b). 

Thus the closed n-braid K is r educ ib le  to a closed (n - 1)-braid, and so we say 

that  it a d m i t s  a r e d u c i n g  move  or has  a r e d u c i n g  loop. If we orient the 

braid strands anticlockwise, and number them along the positive x-axis so that  
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the one that  is furthest from the braid axis A is strand 1, then in the example 

n = 4, i = 1 and #i = 3. Remark: this numbering is correct because each 

P • {t} has a natural orientation, when we think of it as a disc in S 3, i.e. the 

orientation determined by the orientation on A = O(P • {t}). In Figure l(d) 

the z-axis and the positive x-axis determine the plane P • {0}, and in sketch 

(d) we are seeing it from its negative side. 

I 
t ~  delete reducing loop 

5 

(a) 

Ao 

(b) 

g 

/ / / . i  J ,  , 1 4 _ _ j / / j  

(c) I - "  

(d) 
Figure 1. The closed 4-braid a 2-2 a1-1 (r e-1 cr3-1 a2alaea33 has a reducing loop. 

Observe that  the property ' K  admits a reducing loop' is a property of the 

conjugacy class of K.  For, the reducing arc ai  meets every fiber P • {t}, 
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t E [0, 1], so that we can find a reducing arc ai(t)  by cutting/22 along P x {t} 

if and only if we can find a reducing arc c~i = c~i(0) by cutting along P x {0}. 

We next define the sign of a reducing loop. Assume that/ t"  admits a reducing 

move at the arc 6, as in Figure l(a) or 2. After deleting the reducing loop the 

algebraic crossing number of the braid, i.e. its exponent sum when described by 

a word in the standard generators of Bn, will either decrease or increase by 1. 

If it decreases (resp. increases) we say that the reducing loop was positive (resp. 

negative). The left and right examples in Figure 2 are positive and negative 

respectively. The reducing loop in Figure l(a) is positive because the algebraic 

crossing number goes down by 1 after the reduction. 

Figure 2. Positive and negative reducing loops. 

The conjugacy c lass / (  is said to admit an e x c h a n g e  move  if it has a repre- 

sentative K which has the special form Pan_lQanll ,  where P and Q only use 

strands 1 , . . . , n  - 1. See Figure 3. Note that if K admits an exchange move, 

then K is a product of two reducible braids, Pcrn_ 1 and -1 Qan_ 1 of opposite sign. 
The knot or link type K: is said to be e x c h a n g e  r e d u c i b l e  if, up to conjugacy, 

any closed braid representative can be reduced to any representative of minimum 

braid index by a sequence of reducing and exchange moves. 

Figure 3. The exchange move. 

Here are some reasons why reducing and exchange moves are of interest in 
algorithmic knot theory: 
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1. In [3] it was shown that if/~ is a split or composite link type, then exchange 

moves alone suffice to modify any closed braid representat ive/~ to a split 

or composite closed braid. 

2. It was proved in [4] that the unlink on any number of components is 

exchange-reducible. 

3. It was proved in [24] that iterated torus knots and links are exchange- 

reducible. 

4. Exchange moves (together with isotopy in the complement of the braid 

axis) can lead to a major complication in the study of knots via closed 

braids, namely exchange moves result in infinitely many conjugacy classes 

of closed n-braid representatives of a knot or link, all related by exchange 

moves. See Figure [4]. Fortunately (see [5]) it has been proved that if a 

knot or link has infinitely many conjugacy classes of n-braid representa- 

tives then all but finitely many of them are related by exchange moves. 

Since it is fairly obvious from the pictures in Figure [4] that there ought 

to be a class of 'minimum complexity', it then becomes very important to 

recognize when a conjugacy class admits an exchange move. 

In this paper we explore the question: how can we recognize whether the con- 

jugacy class of a given closed braid admits a reducing move or an exchange 

move? 

Iexchao0e/  exchao0o  lexohao0e/ 

Figure 4. Exchange moves and braid isotopy can lead to infinitely 

many conjugacy classes of closed braid representatives of a knot or 

link. 

The question of detecting reducing moves was posed in [6]. In [23] McCool 
proved the existence of an algorithm for determining whether the conjugacy 
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class of a braid admits a reducing move, using Garside's solution to the word 

and conjugacy problems in Bn. The problems of recognizing reducing moves 

and exchange moves were considered by Fehrenbach in his (unpublished) PhD 

thesis [12], using an approach which is very different from ours. In [13] Fiedler 

gives a partial invariant which shows that the conjugacy class of a braid of braid 

index >_ 4 is in general changed by exchange moves. (For n = 3 exchange moves 

can be realized by conjugacy, except in the special case of composite knots.) 

To the best of our knowledge no algorithmic solution exists to the problem of 

recognizing when a braid conjugacy class admits an exchange move. 

At the same time that the connections which we just described between braids 

and links were under investigation, a parallel but quite different set of investiga- 

tions was revealing new information about matrix representations of the family 

of braid groups {Bn,n E 7/,+}. For many years a central problem about the 

braid groups had been the question of whether they were or were not linear 

groups. Inspired by the work of Thurston (see [11]) on surface mapping class 

groups, it was shown in [8], [22] and also [15] that braid groups shared deep 

structural properties with linear groups. However, there was more to it than 

that. In the 1930's an especially interesting irreducible representation of Bn in 

GLn-I(Z [t, t-l]) had been introduced by W. Burau [10], and this Burau  rep- 

resenta t ion  of Bn was widely regarded as a likely candidate for the sought-for 

faithful matrix representation. It was recognized by various people that the 

representation had a natural interpretation via the action of Bn on the n-times 

punctured plane Pn which lifted to an action on H1 (fin, Z) of the infinite cyclic 

covering space fin of Pn, where the covering translation gave a module structure 

to H1. This fact enabled the second author of this paper to prove, in [25], that 

for sufficiently large n the Burau representation is in fact not faithful. The key 

new fact which made that proof possible was the interpretation of the entries in 

the Burau matrix of a geometric braid K as recording information about inter- 

sections between the lifts of certain arcs on P .  and their images, under a braid 

homeomorphism fl to fin, and that the proof of faithfulness rested on whether 

one could construct two arcs which have essential geometric intersections, but 

tricked the Burau matrix into thinking they did not intersect. Non-faithfulness 

was then proved for n _> 9 (resp. 6,5) in [25] (resp. [21], [1]). 

At this juncture there may be a historic opportunity, as developments in both 

the geometry and the algebra are beginning to bridge the gap between the two 

techniques. Regarding the geometry, it is now possible to replace the Markov 

theory with the more powerful Birman-Menasco theory, a relevant portion of 
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which was just described. As for the algebra, it is now known that there is 

no shortage of representations of Bn in subgroups of the linear group over a 

ring of Laurent polynomials (in general with more than 1 variable), moreover 

they sort themselves out into families in a way that suggests close connections 

with the Burau representation, but with one important difference: the newly 

discovered representations include ones that are faithful. We have in mind first 

the important work in Ruth Lawrence's thesis [19]. Second, we are thinking 

of the key contribution from Daan Krammer, who rediscovered the Lawrence 

representation (in a different setting) and used it to prove the linearity of B4 

in [17]. Third, we have in mind the proof by S. Bigelow in [2] and D. Krammer 

in [18] that the 'Krammer Lawrence' or KL representation is faithful for all n. 

Finally, we have in mind the construction which was first suggested in [9] and 

then investigated in detail in [20]. As will be proved below, in the simplest 

case the latter construction gives a variation on the KL representation. Like 

the Burau representation, it detects intersections of certain arcs on the n-times 

punctures disc, and this is the fact that we exploit in relation to the problems 

in algorithmic knot and link theory that we discussed above. 

The main result of this paper will be the development of algebraic techniques 

to detect when the conjugacy class of a closed braid which represents a knot 

admits a reducing or exchange move. See Theorems 2 and 3 and Corollary 1. 

Here is the plan of this paper. In Section 2 we establish our conventions and 

define the particular representations that we shall use here. In Section 3 we 

define the intersection pairing and determine its properties. In Section 4 (resp. 

5) we establish the relationship between the intersection pairing created by the 

action of a braid homeomorphism ~ on the n-times punctured plane and the de- 

tection of reducing loops (resp. exchange moves) in the associated closed braid. 

In Section 6, we establish the connection between the intersection pairing and 

certain blocks of zeros in the image of/~ under our matrix representation of 

B~. In Section 7 we explain why our work does not, at this time, give an algo- 

rithm for recognizing the unknot. We discuss the open problems whose solution 

would make it into an algorithm. We also discuss several other interesting open 

problems which were suggested by the work in this paper. 

2. Representations of Sn 

In this section we review the general construction of 'homology representations' 

of B~. We begin by establishing our conventions and notation. After that we 

construct the representation which is of primary interest, first in a special case, 
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and then in a more general setting. Finally, we show why the special case gives 

a reducible form of the KL representation. 

2.1  BRAID HOMEOMORPHISMS AND GEOMETRIC BRAIDS. W e  will need to use 

two ways of looking at a closed braid: as a geometric closed braid/~" in ~3 (with 

a particular choice of a half-plane P along which we cut it open to a braid K) 

and as a homeomorphisms/3 of P,  punctured at n points. We now explain our 

conventions for passing between/3 and K.  Let 

P = { ( x , y , z )  E R  3 : y = 0 ,  x_>0} 

and let A c P be the z-axis. Then there is a map F: P x [0, 1] --+ 1I{ 3 defined by 

F((x, O, z), t) -- (x cos(2~rt), x sin(27rt), z). 

Note that  when t = 0 or 1 the restriction of F to P is the identity map. 

Choose a set of points Qn = {q l , . . . ,  qn} on P in the interior of a disc D 2 C P. 

Let/~: P --+ P be a b ra id  h o m e o m o r p h l s m ,  i.e. a homeomorphism of P which 

fixes the set Qn and is the identity on P \ int(D). Then ~ is isotopic to the 

identity as a homeomorphism of P and so there is an isotopy (which we may 

assume is fixed on P \ in t (D)) ,  say H: P • [0, 1] ~ P, with H(p, O) = p, H(p, 1) = 

/3(p) for all p e P. Then H induces a homeomorphism H': P x [0, 1] -+ P • [0, 1] 

which is defined by H'(p, t) = (H(p, 1 - t ) ,  1 - t ) .  The composite map H = Foi l '  
induces identifications H(p, 0) = H(p, t) if p E A and H(p, 1) = H(C/(p), 0) for 

all p C P. Clearly It{ 3 , Euclidean space, is obtained from P x [0, 1] by these 

identifications. The image of Qn x [0,1] under H will be the closed geometric 

braid / (  determined by the braid homeomorphism 3. The fact that  we have 

chosen the half-plane P x {0} = P • {1} as our reference gives us, in a natural 

way, an open geometric braid associated to r it is obtained by cutting/~" along 

the half plane P x {0}. See the example in Figure 1. 

Now that  we have learned how to pass between/3 and K,  we will not need to 

distinguish between them. Thus we may pass back and forth freely between the 

interpretation of our braid as a homeomorphism of the n-times punctured plane 

and as a geometric braid in 3-space. We will use the symbol /3 for elements 

of Bn and the symbol/~ for the conjugacy class of/~. This is the same as the 

isotopy class of the associated closed braid, where isotopy means isotopy in the 

complement in I~ 3 of the braid axis. 

2.2 THE GROUP Bl,n. We will be interested in the braid group Bn on n- 

strands, but in order to look at Bn as a group of isotopy classes of homeomor- 

phisms of the punctured plane it will be convenient to regard it as a subgroup of 
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Bn+l. Number the strands in the latter group as 0, 1, . . .  ,n. Let Bl,n C Bn+l 

be the subgroup of braids in Bn+l whose associated permutation fixes the letter 

0. Its relationship to Bn is given by the group extension 

(1) 1 ~ Fn --+ Bl,n ~ Bn --+ 1, 

where the homomorphism Bl,n ~ Bn is defined by pulling out the zeroth 

braid strand. There is a cross section which is defined by mapping Bn to the 

subgroup of braids on strands 1 , . . . ,  n in Bl,n. Therefore we may identify Bl,n 

with Fn x Bn. 

We use bold-faced roman letters for elements of Fn, Greek letters for elements 

of Bn, and upper case Roman letters for elements of Bl,n. Since Fn and Bn 

are both known groups, and since the action of Sn of Fn is also known, we 

conclude that B I,n has a presentation with generators x l , . . . ,  xn, o l , . . . ,  (m-l, 

where the xi's generate the free factor Fn and the elementary braids aj generate 

the factor Bn, satisfying the well-known braid relations: 

(2) a i a j = a j a i  i f l i - j l _ > 2 ,  and aiajai=ayaiaj  i f l i - j l = 2 .  

.. ~1 corresponds to the If a word a~l - ~"~,. represents an element of Bn, then a~l 

first crossing in the oriented braid. 

Our conventions for X l , . . . , x n  are that the generator xi represents a braid 

in which strand 0 begins at qi x {0}, travels in front of strands 1 . . . , i  - 1, 

then around strand i with positive linking number, and then passes to qi x {1} 

traveling in front of strands 1 . . . , i  - 1 again. The geometry then determines 

additional relations which give the action of Bn on Fn: 

xi+l if j = i, 
(3)  O'iXjO'i -1  ---- Xi~_11XiXi+l if j = i + 1, 

Xj otherwise. 

In this way we see that the groups Bn and Fn are both subgroups of Bl,n C 

Bn+l. 

2.3 MAGNUS REPRESENTATIONS AND AN EXAMPLE. In this section we show 

how the ideas which were introduced by W. Magnus to explain the underlying 

mechanism behind the Burau representation of Bn (see [6]) can be bootstrapped 

to yield new representations of Bn. Later we will see that our new, augmented 

representation is in fact the Lawrence-Krammer representation of Bn. 

Recall that the free calculus was used by Gassner in [14] to construct an irre- 

ducible representation of the pure braid group Pn+l in the ring of n-dimensional 
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matrices whose entries are Laurent polynomials in n variables. In [6] it was 

explained how similar ideas could be used to construct representations of the 

subgroups of Bn+l which lie between B~+I and Pn+l. The one that interests us 

here is the irreducible representation of the in-between subgroup Bl,n = Fn :~ Bn 

over the ring Z[t, t - l , q ,  q-l] of Laurent polynomials in 2 variables. The vari- 

able t is to be thought of as being associated with strand 0 and the variable 

q as being associated to strands 1 through n. Call this the Magnus  represen- 

tation of Bl,n. Let M be the ring of n + 1 by n + 1 matrices with entries in 

Z It, t -1, q, q-l]. The Magnus representation is a representation 

p: F n  :~ B n  --+ M .  

It has dimension (n + 1) • (n + 1), but as is well known it is reducible to n • n. 

For our purposes it will be most convenient to use the unreduced form, and we 

shall do so. 

It is shown in [6] how to construct the images of the generators of Fn ~ Bn 

under p. Working out an example, we obtain the following matrices for the 

generators of p(Fn ~ Bn) in the case n = 4: 

o 
1 0 0 

0"1 ~ 0 0 q , 

0 1 1 - q  
0 0 0 

o o (1 
0 q 0 0 
1 1 - q  0 , a2 ~ 0 
0 0 1 0 
0 0 0 0 ( 000 0 

1 0 0 0 
a3 ~ 0 1 0 0 

0 0 0 q 
0 0 1 1 - q  

and 

x2  

x l  e-~ 

q - q ( 1 - q )  0 0 i )  1 - t  l + t q - q  0 0 
0 0 1 0 , 
0 0 0 1 
0 0 0 0 

q - ( 1 -  q)2 - q ( 1 -  q) 0 O \  
0 1 0 0 0 

1 - t  ( 1 - t ) ( 1 - q )  1 - q + t q  0 0 , 
0 0 0 1 0 
0 0 0 0 1 
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q - ( 1 -  q)2 - (1  - q)2 - q ( 1 -  q) O \  
0 1 0 0 0 

X3 ~ 0 0 1 0 0 , 
1 - t  ( 1 - t ) ( 1 - q )  ( 1 - t ) ( 1 - q )  1 - q + t q  0 

0 0 0 0 1 
q - (1  - q)2 - (1  - q)2 - (1  - q)2 __q( __ q) 
0 1 0 0 10 

X4 "-) 0 0 1 0 0 J . 
0 0 0 1 0 

1 - t  ( 1 - t ) ( 1 - q )  ( 1 - t ) ( 1 - q )  ( 1 - t ) ( 1 - q )  1 - q + t q  

Let / ) (z)  denote a diagonal matrix whose diagonal entrises are z. We next define 

the homomorphism 

(4) r: F~ )~ Bn -+ .A4 by 7(G) = I)(qdeg(G))p(a), 

where G E BI,n and deg(G) denotes the degree of G, i.e. its exponent sum in 

the basis elements xi of the free group Fn. In particular, 7(ai) = P((~i), whereas 

 (xj) = t ) (q)p(xj ) .  

Using the representation T : BI,n --+ f14, we are finally ready to construct (in 

our special case) the representation r + of Bn which is of primary interest to us 

in this paper. It is essentially identical to Lawrence's version (see [18]) of the 

now-famous Krammer Lawrence representation. Let Pn = P - Qn denote the 

n-times punctured plane. View Fn as the fundamental group of Pn based at 

some point x E A = OPn, and use the representation v (restricted to the first 

factor) to define a local system s on Pn. We already gave the action of Bn on 

Fn in (3). It will be helpful to think of a local system as a covering space which 

has the structure of a fiber bundle, where the fibers are copies of the Magnus 

reprsentation V = Z[t, t -1, q, q-1]n. The homology H1 (Pn, x, s is sometimes 

called H1 (Pn, x, V), homology with coefficients in V viewed as a module over 

the fundamental group of Pn. It is a direct sum V G V |  �9 V (n factors) and 

we denote by ei: V --+ HI(Pn,x, s the inclusion on the ith factor. For a E V 

the identification is such that  ei(a) is the loop xi lifted to the cover, in such a 

way that  the basepoint x at the beginning lifts to the element a E V. 

We use the action (3) to compute the map induced by the elementary braid 

generators ai on homology: 

ai: Hl(Pn,x ,s  --+ Hl(Pn,x,  (ai) .(s  

Since it is enough to determine the homology classes ai(ej)(a) for a E V it is 

enough to calcluate the composites oiej. Identifying both source and target of 
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the map with V ~) V (9 . . .  | V in the manner  described above, we find 

ej+l(r(Xj+l)) if j = i, 
(5) aiej = ei(r(xi))  + ei+1(1 -- r (x i+ l ) )  i f /  = i + 1, 

ej otherwise. 

To understand (5), we think of ei+l(C~) as the loop xi+l lifted to the cover, 

in such a way that  the base point x at  the beginning lifts to the element ct E 

V. When we apply ai we get a loop that  traces xi+l anticlockwise, then xi 

anticlockwise, and finally Xi+l clockwise. However, the initial points of these 

loops lift to three different sheets in the cover, i.e. to three different elements of 

elements of V. These are the coefficients of ei+l, ei, and - e i + l ,  taking account 

of the fact that  the action of a loop w in Pn on (a i ) , ( s  is the action of ai(w) 

on ~ .  

Note tha t  in future sections we will make the following identification. Since 

34 = End(V) is the endomorphism ring of V, the map e,: V ~ HI(Pn, x, V) 

can be viewed as an element of H1 (Pn, x, M )  where the homology is taken with 

respect to the left action of Fn on 34. This homology module is a free right 

34 module of rank n and the ei are a basis for this module. The formula 

displayed above describes the action of ai with respect to this basis. However, 

we are not quite done. The resulting matr ix  with 34 entries does not define 

a representation because our identification of the source and target  both  with 

V | V (F . . .  �9 V was not natural.  

For any braid ~ there is a natural  map/3,1:  --+ s which is given on the fiber 

V over x by multiplication by r (~) ,  and it extends to a map of the whole local 

system because of the relations (3) in Bl,n. 

Now let c~ be any other braid. Applying c~, we obtain a second map of local 

systems (~,/~,t: -+ ct,E. Because homology is a bifunctor we then obtain a 

commutat ive  square 

H1 (Pn, x, ~) > Hl(Pn,x, t3,f~) 

l 
HI (Pn, x, s 

> HI(Pn,x,o~,~,f-.) 

1 
> H l ( P n , x , a , s  

g~ (P~, x, r,) 

Each module in the diagram is a direct sum of n copies of V and so each map 

may be represented by an n by n matr ix  with entries in 34. The leftmost vertical 
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map in the square is given by a diagonal matrix D(r(/~)) with each entry equal 

to 7(/3). The horizontal maps are the maps on homology given on generators 

by formula (5). The fact that the square commutes implies an equality of two 

maps from the upper left corner to the lower right corner D(r(a))aD(v(/~))/~ = 

D(r(a/3))a~5, so the assignment of each braid generator ai to the matrix D(ai)a~ 
describes a braid group representation. Thus, if D(r(ai)), i = 1, 2, 3 denotes the 

block diagonal matrix (with each block a 5 x 5 matrix) whose diagonal entries 

are the blocks r(ai), defined earlier, the 'augmented' representation r + of B4 is 

given on the elementary braid generators by 

i r(x,) 0 r+ral ,=D(r(a,)) 1-r(x2) 0 
0 1 
0 0 

i T(~I)T(Xl) 
= T ( 1 )  7(a,)(1 - r ( x 2 ) )  

0 
0 
0 
1 

0 
0 

0 T(~I) 
0 0 

(i oo ~+(~) = ~(~(~)) 
1 1 - 7(xa) 
0 0 

( r(~2) 0 0 
o r(~2)~(x~) 

= ~(~2) ~ (~) (1  -~ (x3 ) )  
0 0 

(i 00 T+[~3)t, = ~(T(ff3)) 0 0 T(X3) 

0 1 1- -7(X4)]  

0) 
0 
0 ' 

0) 
T(~2) 

( r(aa) 0 0 0 ) 

i r(~a) 0 0 
0 0 r(~a)r(xa) " 
0 r(a3) v(a3)(1 - v(x4)) 

The rank of this representation is 4 • 5 = 20 (for general n it is n(n + 1)). If 

we had used the reduced Magnus matrices the rank would have been n 2. 

2.4 THE GENERAL CASE. Suppose we are given a representation r: Bl,n -+ 

GL(V). The module Hi (Pn, x, ~.) has a Bn action, coming from the fibration 

Pn "-+ XI,~ --+ Xn 
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where X1,  n is the space of n distinct points in P with one marked point, and X n 

is the space of n distinct points in P. The second map is forgetting the marked 

point. The fiber over a subset Qn c P is Pn. The action of BI,n = 7r1(Xl,n) on 

V is taken as the monodromy defining a local system on XI,n and as usual the 

fundamental group of the base acts on the homology of the fiber over Qn. Note 

that the group H1 (Pn, x, s is homology relative to the basepoint. 

This is a direct sum of n copies of V. The action of a braid/3 is the com- 

posite of the homology action HI(P, ,x ,s  --+ HI(P,~,x,/3.s with the map 

induced on homology by/3.s ~ s which multiplies the fiber V over x by T(/3). 

Thus, given a representation v: BI,~ -+ GL(V) one obtains immediately a new 

representation T+: Bn --+ GL(V 0 "'" | V). 

2.5 THE KRAMMER-LAWRENCE REPRESENTATION. We now show that our 

n(n + 1)-dimensional representation contains the one Krammer and Bigelow 

have proven faithful (with our 't' playing the role of Krammer's t2). Although 

we've displayed the unreduced Magnus matrices above, for the moment let us 

take p: BI,n -4 A4 to be the size n reduced matrices. Let Xn be the set of n 

element subsets Qn c P, let Xl,n be the set of subsets {q0,...,  qn} C P with q0 

marked, and let X2,n be the set of subsets of order n+2 of P with two separately 

marked points. Recall Qn = {ql , . . . ,  qn } and Pn = P -  Qn. Let SP be the space 

of pairs of distinct, separately marked points in Pn. Let s be the local system of 

X2,n with fiber Z[t, t-X,q, q-l] and monodromy matrices as in Krammer's and 

Bigelow's papers, so that the power of q is the winding number of either marked 

point around ql , . . . ,  qn and the power of t is the winding number between the 

marked points. We have the diagram of fibrations 

( P -  {q0,...,qn}) 

1 
(P  - {qo, . . . ,  q~}) 

�9 SP  �9 P - { q l , . . , q n }  

J ) X2,n �9 X l ,n  

Xn ) X~ 

The representation of Bn defined by ~-+ maps onto V and the kernel is a copy 

of the unreduced homology HI(P,~, k*7-/), where 7-/is the local system on Xl,n 

corresponding to the representation T: BI,,~ --+ ~4. We wish to compare this 

with the Krammer-Lawrence representation of Bn. From the spectral sequence 

of a fibration we have an isomorphism of representations of the fundamental 
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group Bn of X~. 

(6) H2 (SP, i* f~) = HI(Pn, k'7/1 (P - {q0,. . . ,  qn}, j* f~)) 

The module on the left is the Krammer-Lawrence representation (but with 

two marked points instead of two indistinguishable points) while the module 

on the right is the homology Hl(Pn,k*7-l') with coefficients in the local sys- 

tem H'  = "]-LI(P- {qo,.. .  ,qn},j*•). To prove HI(Pn, k*7{) is isomorphic to 

Hl(Pn,k*Tt ~) it now remains only to identify the two local systems H and 

7-/~ on Xl,n. For G E Bl,n the monodromy of G on the first local system is 

T(G). The monodromy on the second is the composite of the homology map 

HI(P - {q0,...  ,qn},j*f~) ~ H I ( P -  {q0,... ,qn},g*j*s represented by the 

reduced Magnus matrix p(G), followed by the map on homology induced by 

/~.j*s --+ j*s which is multiplication by qdeg(o). The composite is T(G), as 

needed. To get the Krammer-Lawrence representation of two unmarked points 
it is necessary to adjoin v~ to our coefficient ring (remember our t is Krammer's 

t2). The local system s is now the pullback of a local system on Xe,n/C2, where 

the cyclic group C2 acts freely by interchanging the markings on the two points. 

We obtain a C2 action on H2 (SP) and, since the Krammer-Lawrence represen- 

tation has no 2-torsion, we may identify it with the C2 invariant submodule, 

which is therefore faithful, from which 7 + is as well. 

Note too that  the T + are all faithful (because the Lawrence Krammer repre- 

sentation has been proved to be faithful). On the other hand, the r are not all 

faithful (because the T(ai) act on the last n basis vectors exactly as the Burau 

matrices do). These two facts will be important in Theorem 1 below. 

3. T h e  i n t e r s ec t i on  pa i r ing  

For the rest of this section, AA will denote an arbitrary ring, depending on n, 

together with a homomorphism 

T: Bl,n -+ M 

to the units of M .  We further assume that  the rings A//are appropriately nested 

as n increases. 

In the theorem which is stated below we will use the representation T: Bl,n -+ 

A/[ to allow us to multiply elements of A/[ on the left or on the right by elements 

of Bn or Fn. In order to define fundamental classes of arcs in P,~ we work with 

homology with coefficients in A4. Choose points x, y on the oriented braid axis 

A. In the orientation of A as the boundary of P we choose y next to x (as in 
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Figure 5), but with y displaced in the positive direction compared to x using 

the orientation on A. Note that  the axis A appears to go from right to left (the 

clockwise direction) in the figure. This means if we use the orientation on A to 

orient Pn the figure shows the negative side of the plane Pn. This corresponds 

also to the negative side of the plane P .  • {0} in Figure l(d), such that  the 

A-axis in Figure 5 corresponds to the upward-pointing z-axis in Figure l(d). In 

that  figure the basepoints x and y would appear with y above x on the z-axis. 

Because the fundamental group of P~ maps to the units of the ring 34, it 

acts on any right or left 34 module. We denote by 34teft the free rank one 34 

module upon which 34 acts on the left by right 34 module homomorphisms, 

and we denote by 34right the free rank one module upon which 34 acts on 

the right by left 34 module homomorphisms. Thus we consider two separate 

homology modules: 

(7) Hl(Pn, Y,34right) and HI(Pn, x, 341eft). 

The punctured plane is homotopy-equivalent to a wedge of loops based at x or 

y which encircle and separate the n points, and since we are taking homology 

relative to a point, the module H1 (P~, x, 341eft) is equal to the cellular l-chains 

of this wedge of circles. This is a right M module which is free of rank n. 

It is a two-sided B,~ module, with the right action coming from the fact that  

Bn maps to 34 and 34 acts on the right, the left action being the 'interesting' 

homology action, which commutes with the right 34 action. We can also form 

HI(Pn,y, 34right) in the analogous way. It is a two-sided Bn action with the 

right action being the 'interesting' one. (Look ahead to formulas (12) and (13), 

also (14) and (15), where the actions are worked out explicitly). If 7 is a loop in 

Pn based at x we have a fundamental homology class [7]z E H1 (Pn, x, 341eft), 

and if 6 is based at y we have [6]y E Hi (P~, y, -]~right). 

Y3 • 

A ~ ~ 
y x y x 

(a) (b) 
y x 

(c) 

Figure 5. The intersection form. 
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Note that  our choice of notation implies that  for v E Hl(Pn,x,  Mle/t)  and 

braids a ,  ~3 E Bn the symbol 

av/3 

means the same thing as T + (a)VT(13) because the 7 + representation defines the 

left action while the ~- representation defines the right action. Also, if x E F~ 

the symbol 

vx  

On the other hand, if w E H](Pn,Y,J~right) then in will always mean v~-(x). 

the symbol 

aw~ 

it is the left action tha t  is defined via ~-(c~) and the right action is one which we 

have not named. It  will turn out to be the transform of T+(/3 -1) via a certain 

correspondence * but let us not worry about  that  yet. And if x C Fn the symbol 

XW 

will always mean T(x)w. 

As before, the free group Fn will be viewed as the fundamental  group of pn. 

An element w E Fn can be represented by a loop w based at either point, as 

we shall identify the fundamental  group of Pn based at either x or y via a path  

in the axis A connecting x with y. If we choose w to be a loop based at x or at 

y then we obtain two separate homology classes [w]x and [w]y. Note that  these 

belong to totally different homology groups. We may omit the subscript when 

there is no ambiguity. The elements X l , . . . ,  x~ will be a basis of Fn represented 

by arcs x l , .  �9 �9 xn which begin and end at x, encircling the qi in such a way that  

the product  Xl �9 �9 �9 x~ is represented by a simple arc Xl .. �9 Xn which encircles all 

the qi. I t  is worthwhile to be quite careful about  the orientations of the xi. 

In all our figures, in which we display the negative side of Pn with the axis A 

at the bot tom of the page, going from right to left, the xi are oriented so they 

appear  to encircle qi in the counter-clockwise direction. We use the 'composition 

convention' for composing paths so that  in the pa th  XlX2 the point traverses 

first x2 and later Xl. 

It  is convenient to introduce a second basis Y l , . . . ,  Y~ of Fn where 

Yi -- XlX2. . .  Xi-lx~-lx~-_ll . . .  x~ -1. 

We shall usually represent the Yi by arcs Yi based at y. Note there is an 

involution of Fn which interchanges the roles of the xi and the Yi. 



142 J.S.  BIRMAN AND J. A. MOODY Isr. J. Math. 

In the statement below, a 'loop based at x (resp. y)'  will mean any loop 

encircling just a single qi which is oriented anticlockwise (resp. clockwise) when 

viewed on the negative side of the plane P.  A 'simple homology class' will mean 

the class of a loop based at x (respectively y) which has the additional property 

that  it has no self-intersections. 

Assume that  we have been given a nested series of rings 3.t (subscripts 

omitted) and representations T: BI,,~ --+ M which satisfy the hypotheses: 

�9 All z+: B~ --+ GL~(M) are faithful. 

�9 The representations 7- = 7n: BI,~ --+ M are not all faithful, i.e. for some 

n there is a non-trivial element in the kernel of Vn. 

�9 There is an anti-involution * on each M such that  7(G)* = T(G -1) for 

G E BI,~. 

�9 The v(xi) - 1 are non-zero divisors in A/[ which do not generate the unit 

ideal in the subring of 3,t generated by the T(xi) and T(Xl) -1. 

THEOREM 1: Under the hypotheses just stated, there is a generically non- 

degenerate M bilinear intersection pairing 

(s) ( , ): Hl(Pn,y, JMright) • Hl(Pn,x,  fl/[left) --+ 2r 

which has the following properties: 

(a) If  /~ E Bn, v E Hl(Pn,x,  Mleft) and w E Hl(Pn,y, Mright) then 
(flV/~ -1 , /~w~-1> = fl(V,W>/~ -1 .  

If  in addition u,s E A4 then (uv, ws) = u(v,w>s. 

(b) I f ~  E Bn,  v E Hl(Pn,x,.h/[left) a n d w  E Hl (Pn ,y ,  Jk/[right) then <v~,w> = 

(c) I [ 7 , 5  are loops based at x,y  respectively and/~ E Bu, then 

[/~"/]x ---- /3['~]x/~-1 E H1 (P~, x, ./~left) 

and 

[fl(~]y ---- ]3[(~]y/~ -1 E H1 (Pn, Y, -/~right). 

(d) There is a semilinear correspondence * between HI(Pn, y, .A/[right) a/ld 

H1 (Pn, x, Mleft). It  takes simple homology dements  to simple homology 

elements and is compatible with the anti-involution * on M and with the 

Bn action, so that for r E M ,  v E H1 (Pn, x, Mleft), w E HI(Pn, y, .A/[right) 
and ~ E Bn we have 

(Zvr)* = r*v*Z -1 and (rwg)* = z - lw*r* .  
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Also for w E Fn, i f  wz and wy are loops based at x and y respectively 

* =  = [wx ]5. which represent w then [w~]~ [w;1]y and [wy]; - '  

(e) Let w E Fn. Let w be a loop based at x which represents w.  Let v = [w]x. 

Then a necessary condition for the existence of a simple arc representing 

w is 

<v*, v> : - 1, 

where 1 denotes the identity in f14. 

(f) I f 7  and 6 are simple loops based at x and y respectively then ([6]y, [7Ix> = 

0 i f  and only i f  1/and 5 can be homotoped, keeping their endpoints fixed, 

so that they do not intersect. That is, the pairing is effective. 

Proo~ We begin our proof by constructing the intersection pairing, first via an 

example which will allow us to understand both the geometry and the algebra, 

and then algebraically, in full generality. 

CONSTRUCTION OF THE PAIRING: We have not yet constructed the pairing, 

but it may be helpful to the reader to have an example to keep in mind before 

we do so. Consult Figure 5(a). We wish to compute {[Y3]y, [x3]~>. There are 

two points of intersection between x3 and Y3. Travel along x3, with its given 

orientation, to either intersection point and then switch to Y3 to avoid the 

intersection, preserving orientation. This determines an oriented arc from x to 

y for each intersection point. The arcs in the example are shown in sketches 

(b) and (c). They are given by the elements X l X 2 X  3 and X l X  2 of Fn, where 

we read words from right to left (in other words we compose paths according 

to the conventions of function composition). The intersection is counted as 

positive (resp. negative) if it is necessary to make a right (resp. left) turn at 

the intersection point to avoid the intersection and preserve orientation. In 

the example ([Y3]y, [x3]x) = 7-(XlX:aX3) -7(XlX2) .  Note that  the intersection 

pairing has its values in A4. 

We pass to the general case. Using the basis x l , .  �9 xn for the free group Fn, 

we pass to the group ring ZFn. Let I be the augmentation ideal. 

As we have already observed, the homology H1 (Pn, x, fl41e]t) is equal to the 

first cellular chain module of a wedge of n circles with coefficients in A41eft. 

This is a free right M module of rank n. The tensor product I | -/~ is also 

a free right A4 module of rank n. The isomorphism of free right A4 modules 

sending the basis element ei of section 2.3 to the element (x~ - 1) | t E I | A4 

is particularly convenient, because then the action action of B~ on the left 

described in section 2.3 corresponds to the action in which an element ~ | m C 
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I | A/I is sent to 
~(/~ |  ~--- ~$~--I |  

in which the conjugate fit~ -1 is calculated in the (group ring of the) larger 

group BI,~. From now on we may as well identify ei with (xi - 1) | 1. 

The homology class of an arc ~/in Pn based at x is determined by its class 

g E Fn, by the derivation 

(9) d: Fn ~ Gei.A/I, xi ~ ei, d(xy) = d(x)y + d(y). 

The latter rule holds for all x, y E Fn and is the Leibniz rule for a derivation 

(a Fox derivative). Note that the right multiplication by y is by definition the 

right multiplication using T, SO the formula could more rigorously be written 

d(xy) = d(x)v(y) + d(y). Note also that the rule implies d(x -1) = -d (x )x  -1. 

Applying this Fox derivative to the element w E Fn which is the homotopy 

class of the loop 7 we have 

(10) [~/]x -- d(w) E |  = H, (Pn, x, ~41eft). 

For example, 

[x2x4x l]x = d(x x4x  1) 
= d ( x 2 ) x 4 x 2  -1 -t- d ( x 4 ) x 2  -1 -t- d(x2 -1) = ee(x4 - 1)x2 -1 -4- e4x2 -1 . 

This map d is equivariant under the Bn action by conjugation on Fn 

(11) d(fif/3 -1) =/~d(f)/3 -1 . 

Note that in this formula the conjugate /~ffi-1 can be calculated in F~ 

using equation (3) while the right side of the equation can be written as 

T+ (/~)d( f )'r(l~) -1 . 
The module Hl(Pn,x ,  Mleft) has an M-linear B~ action on the left. This 

action is the same as the action of B~ on I | M,  given by the formula 

/~(t | r) =/~t/~ -1 | where t E I, r E M.  In terms of the basis e l , . . . ,  en the 

left M-linear action is given explicitly by 

{ ejT(ai)r i f j  # i , i  + 1 
(12) aiejr = ei+lT(O'i)r if j = i 

eiT(aixl)r + ei+lT(ai)(1 -- T(Xi+l))r i f j  = i + 1 

while the less-interesting right B n action, which is semilinear with respect to 

the Bn action by conjugation on 2t4, is given by 

(13) |  = 
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Now we repeat everything, this time taking homology with respect to the right 

action of BI,,~ on 34, using our basepoint y. See Figure 5(a). In order to 

describe this module in a way which will later make our intersection pairing 

simple, we use the involution on F n which is given by 

X i e-~ Y i  = x l x 2 "  "" x i - l x i - l l  "'" X l  1 �9 

We have that Bn acts M-linearly on the right on the left 34-module 

HI(Pn, y, 34right) = (~i+1 34fi, where we now take as our basis elements the 

f i  : 1 Q (Yi --  1) E 3 4  @Fn I .  The right action of B~ is easiest described by 

giving the action of the inverse of the braid generators: 

{ rv(a~l)fj  i f j  r i,i + 1, 
(14)  rfja71 = rr(yi+la~-l)f~+l q - r ( 1  -- T(yi))T(or~l)f  i i f j  = i ,  

/ 'T(0"i-1)f /  j = i + 1. 

We also have the less-interesting left action of Bn on this module which is 

semilinear for the B~ action by conjugation on M,  and is given by 

(15) . r f j  =  (o,)qj 

The homology class of an arc (f based at y is given in terms of its homotopy 

class g E F~ by the derivation e(w) defined as follows: 

(16) e: F~ ~ |  Hi (Pn, Y, 34right), Yi ~'+ fi, e(xy) = xe(y) + e(x), 

and we have [5]y = e(g), and the derivation e is equivariant in the sense that 
e(Zg/~ -1  ) ~-- ~ e ( g ) Z  - 1  . 

Now that we have defined two modules, define our M bilinear pairing ( , ) 

by 

(17) (L,e3) -- ( 0, i r  
T ( X l ' ' ' X i )  -- T ( X I " ' ' X i - - 1 )  , i = j .  

Since the T(Xi) -- 1 are non-zero divisors they will become invertible in any fiat 

Artinian fraction ring of 34. In other words this becomes a perfect pairing, i.e. 

T becomes non-degenerate. This completes the definition of the pairing. 

Remarks on notation: We could have avoided introducing the symbols ei, fi, d 
and e, using instead 

= [x lx, = d ( w )  = = 
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where in the final two expressions w is taken to be a loop based at x or y 

respectively. However, we use the symbols ei and fi to make them look like 

basis elements in two vector spaces, and using the symbols d and e made them 

look like derivations. For this reason we chose what some readers may view as 

an excess of notation. 

Proof  of  (a): To verify our conventions, let us show that  the pairing defined in 

this way really is compatible with the braid action. Thus for ~ C Bn we need 

to check that  (t3v~-l,/~w/~ -1) : ~(v,w)/~ -1. We may assume that  the braid 

homeomorphism ~ is ai and that  our vectors v and w are of the form 

v : af i  + bfi+l, w : eir + ei+lS. 

We have 

(/~v/3 -1 , ~w~ - I )  : ( a i ( a f i  + b f/+l )a~ -1 , ai(eir + ei+ls)a~ 1) 

: (a ia[y i+lcr ; l f i+ l  + (1 - yi)a~-I f~] + aib[a:l f i+l] ,  

[ei+lVri]rcri-1 § [ei(rixi § ei+l(ri(1 -- Xi+l ) ]8o-~- l ) .  

In the formula above the first two expressions in square brackets come from the 

right side of (14) and the last two expressions in square brackets come from the 

right side of (12). 

Now using definition (3) from section 2.2 and also the definition of the Yi we 

k n o w  
yia~ -1 = a~'lyi+lYiy~+ll, 

Yi+lO'~ -1 = O'~-lyi, 

O'iX i : Xi+ lO ' i ,  

O'iXi_kl : Xiq_lXiXi~.llO'i. 

Making these substitutions, and using the notation such that  Za denotes 3a~ -1 , 

we obtain 
([~"a(1 - yiYi+lYi -1) +~r~ b]f/+c,~ ayi f /+ l ,  

ei+l[(air § (1 -1 a, --  Xiq_lXiXi-kl ) 8)] § e i x i q _ l a ' 8 )  

and using the definition (17) of the intersection pairing this becomes 

[~a(X - yiyi+ly~ -1) +a~ b](xx �9 �9 �9 xi - Xx. . .  Xi-x)[Xi+l a~ s] 

§ 1 7 6  xiq-1 --  X l ' ' '  X i ) [ ( a i r  § (1 --  Xiq_lxXiXi+x)CrlS)], 

and when this expression is multiplied out, taking into account 

yi  = X l  �9 �9 �9 X i - l X i  - I  �9 �9 �9 x 1 1  
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everything cancels except 

Cr i a (Xl ' ' 'X i - lX i+ l  --Xl'''xi-1)air + crl b(xl"'Xi+l -Xl"'xix i+l )  a/8. 

Using o'ix1 . . .  x io~  1 -- x1 �9 �9 .Xi_lXi+l this becomes 

o i ( a ( x i . . . x i - x 1 . . . x i _ l ) r + b ( X l . . . x i + i - x i . . - x i ) s ) 6 r i  -1 

= a i (a f i  + bfi+l,  eir  + ei+as)a~ -a -- ~ri(v, W)O'i -1 

as desired. This proves s tatement  (a) of the theorem. 

P r o o f  o f  (b): We calculate, using (a), 

= 9[9  -1 (v, ~wg- ' ) /~ ]  = (v, ~ w )  

P r o o f  o f  (c): Left to the reader. 

P r o o f  o f  (d): We can use the anti-involution �9 on ~4 to relate the homology 

class of an arc in either of our two homology groups as follows: Let e~ E |  

be defined by 

q -- e(xF1), 

�9 is a basis and we have where e is our derivation. Then e i 

|  -+ o M f i ,  

Z eir  F r*r M. 

The inverse map sends fi  to f~ = d(y~-l). 

P r o o f  o f  (e): We are given v = [w]x, where w is a simple loop based at x. 

Every simple x-based loop in Pn is the image of one of the generators, xi, of Fn 

under a braid homeomorphism. Therefore v = [/3(xi)]x = / 3 [ x i ] ~  -1 = /3e i~  -1 

for some/3 r Bn, (We could even take i = 1.) Then we have 

<v*,v> * - '  = (j~e i ~ , f le i f l -1)  , -1 = ~ % , e i ) 9  �9 

Now we have e~ = e(x~ -1) where e is the derivation sending Yi to f i .  Writing 

x i  -1 = y l y 2 " " '  yiYi-_11 . . .  y l  1 

we expand using the rule e(ab)  = ad(b) + e(a). We find tha t  the term involving 

f i  is YlY2" '"  Y i - l f i  and therefore 

(e*, ei) : Y l " "  Yi- i  (f/, ei} 

= q-(Yt""" Yi-1)(T(X1""" Xi) -- T(X1""" Xi--1)), 
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which simplifies t o  T ( x i )  -- 1. Then 

<v*,v) =/~-:(T(Xi)  -- 1)/? : T(3(Xi)) -- 1 : r(W) -- I. 

Proof  of  (f): This part of the theorem relates the intersection pairing with 

the the geometric intersections of arcs on surfaces. Throughout this proof we 

are assuming that r + is faithful. Therefore we needn't make any distinction 

between a braid and its associated matrix. We need a braid element w in the 

kernel of the representation v. (This is where we use the hypothesis that  r is 

non-faithful for some r.) Suppose our element w is a braid on r strands. Say 

5 is a loop based at y which encircles only qi and 7 is a loop based at x which 

encircles only qj and that ([5Iv , ['Y]x) = 0. Recall Yk is the arc based at y whose 

homotopy class is Yk. We may find a braid a such that a(5) = Yk for some 

number k and we have 

([(~]y, ["~]x) = I';(fk,/';;--1[~]1"i;) N-1 - -  N(fk, [ N - 1 ~ ] ) ~ - 1 .  

Let us re-name our arcs, giving ~-l.y the name #. Now we are in the situation 

where 

(f, ; ,  [,~]x) = 0 

and we wish to show # can be homotoped to not meet the arc Yk. First note that 

# does not encircle qk because if we expand [p] in the form e:c,  + . . .  +enen then 

0 = (fk, ~} ---- T(X1 """ Xi - -1 ) (T(Xi )  -- 1)ek forces Ck to be zero, because r(xi) - 1 

is a nonzero divisor. But ck would be a sum of elements of the form + r ( w )  for 

w 6 Fn whose coefficient sum adds to the integer +1 if # encircled qk and such 

a sum is congruent modulo the r(xl) - 1 to the element 1 6 34. By hypothesis 

the ideal generated by the r(xi) - 1 in the appropriate subring is not the unit 

ideal, so this is impossible. By enlarging n, in effect adding r - 1 new points 

numbered qk+: , . . . , qk+r - :  to our set Q~ and renumbering, we may assume # 

does not meet the arcs Yk+: , . . . ,  Yk+T-1 based at y whose homotopy classes are 

Y k + l , . . . ,  Y k + r - 1 ,  SO w e  may assume 

(A, = o 

for i = k + l , . . . ,  k + r - 1 .  By further enlarging {q~}, adding new points q l , . . . ,  qr 

and renumbering, we may assume # also does not meet the arcs Yl , . . . ,  Yr based 

at y whose homotopy classes are Y:, .  -. ,  Yr so we also have 

(A ,  = o 
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for the v a l u e s i  = 1 , 2 , . . . , r  as well. In all, we have { f i , [#]x)  = 0 for i = 

1 , 2 , 3 , . . . , r , k , k +  1 , . . . , k  + r -  1. 

We can let a be a second copy of the braid w but  which acts on s t rands  

k, k + 1 , . . . ,  k + r - 1, so tha t  the left act ion of a on only the basis elements 

e k , . . . ,  ek+r-1  is nontrivial,  and the act ion of a on ~/l is trivial. 

Let xr as usual be the simple arc based at x which encircles just  qr, whose 

h o m o t o p y  class is xr.  Let a be a braid which does not affect s t rands 1, 2 , . . . ,  r - 1  

such tha t  a(Xr) = #. We claim tha t  the conjugate  braid a - l a a  fixes the vectors 

e l , . . . ,  er E GeiJ~l.  It  clearly fixes e l , . . . ,  e r -1  since the braid does not  involve 

the corresponding strands.  As for er write 

o~e r ~ e l C  1 -~- . . . -}- CnC n. 

The coefficients ci which are zero are the same as the ones which are zero if 

instead we calculated c~era -1. Thus  we calculate 

( f i ,  olero~ -1)  = ( f i ,  ol[xr]o1-1) = ( f i ,  [ol(x~)]) -- ( f i ,  [#]) 

which is zero for i = k , . . . ,  k + r - 1. This proves ci = 0 for i = k, k + 1 , . . . ,  

k + r - 1. Since the braid a is in the kernel of the act ion on M it acts only on 

coefficients which correspond to the s t rands it acts on, i.e. only on coefficients 

ck, ck + 1 , . . .  , ck+r-1  of c~e~, and yet  these coefficients are all zero. This shows 

a fixes aer ,  so a - l a c ~  fixes er as claimed. 

Now one sees t ha t  the c o m m u t a t o r  [ a - l a a ,  w] also fixes the vectors e l , . . . ,  er. 
r This is because ~ preserves Oi=leiA/I  and c ~ - l a a  has no effect on this module.  

Now write 
~ O~-- 1CrO~ 

and let us calculate the act ion of  a c o m m u t a t o r  

on the whole module,  for numbers  s and t. We already know e l , . . . ,  er are fixed. 

Thus  let i _> r + 1 and let us calculate. Write  

~ - S e i  = erar + "'" + enan and wter  = e ld l  + . . .  + erdr.  

Then  

~swt /~-Sw- te i  = ~swt~-Se i  = ~Swt(erar + " "  + enan) 

= / ~ S ( e l d l a r  + . . .  + erdrar  + er+lar+l  + "'" + enan)  

= ~ S ( e l d l a r  + . . .  + erdrar  - erar  + ~ - S e i )  

= e l d l a r  + "'" + er(dr  - 1 )a t  + ei. 
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We see that  the action of the commutator  adds to the ith basis vector only 

some multiples of basis vectors e l , . . .  ,er. In other words, the action of the 

commutator  lies in an abelian group of elementary matrices with entries in 3d. 

It follows that  for different values of s and t the commutators all commute. In 

other words, 
1 = [[fls,cot], [fls' ,cot']] 

for all s, t, # ,  t ~. 

Any such relation (for any given values of these numbers) continues to hold 

if we substitute w and b for any powers, and it follows from McCarthy's Tits 

alternative for braid groups [22] that  fl and co commute. 

Now, we could have chosen co pseudo-Anosov, and so fl and co commuting, 

that  means fl is a braid which does not involve the r th  braid generator at .  This 

means that  /3 (which we already know does not involve the braid generators 

0"1,... ,O'r_l) also does not involve a~. In other words, a-lcrct preserves the 

homotopy type of xr. Then a preserves the homotopy type of a(xr) = #, and 

again choosing a pseudo-Anosov on strands k , . . . ,  k + r - 1 we see this means 

# does not meet the arc with homotopy class Yk, as needed. This completes the 

proof of (f) and so also of Theorem 1. | 

4. Detecting reducing loops 

We are now ready to make the connection between the existence of a reducing 

loop in a closed braid ~ and our intersection pairing on arcs in the n-times 

punctured plane Pn = P - Qn, under the action of ~ E B~: 

THEOREM 2: A braid ~ E Bn is conjugate to a positively (respectively neg- 

atively) reducible braid if and only if  there is a simple homology class v 

Hl (Pn ,x ,  Adleft) such that (v*,/~v~ -1} = 0 (resp. (~V*/~-I,v)~ 0). 

Proof: We will treat  the positively reducible case, the negative case being 

similar. Suppose we have a simple homology class v such that  (v*, r -1) = 0. 

The homology class v, being assumed simple, is represented by an arc rl based 

at x encircling some qi. We know that  the homology class v = [zl]x satisfies 

(18) 0 = (v*, 9vZ -1)  = [9@.  

Suppose that  ~ encircles qi and fl~/ encircles qj. We wish to apply Theorem 

1. Let w be a loop based at y which represents the same element of ~rl (P~, y) 

as ~. Then we have 0 = ([co]y, [~rl]x) and the theorem says we can homotop 
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the two loops w and fl(~) apart while fixing both base points. Another way 

of describing the same information is that  if we had connected the basepoint 

x to qi by an arc "7 entirely contained within the closed loop r/, then 3, t2/3(3,) 

could be be homotoped fixing both endpoints qi and qj so that  the union is a 

simple arc from q, to qj passing through the basepoint x. Near the basepoint 

the orientation of this arc is clockwise (in the direction from y to x) and this 

is why it is a positive reducing move. Moreover, rather than modify f13` by a 

homotopy, we can choose the braid isotopy so that  3, and f13, actually meet only 

at the basepoint. 

Finally, it helps to move the basepoint away from the axis A slightly, to a 

new point x r nearby in the interior of P. 

We will be done if we can prove the following lemma, which actually shows 

how the reducing move may be carried out. Note that  the lemma does not 

distinguish between positive and negative reducing moves. 

LEMMA 4.1: Let ~ be a braid homeomorphism. Let x ~ E P be a basepoint 

which is outside the disc where ~ acts. Let 3, be a simple arc in P which joins 

x ~ to qi. Then there is a reducing move replacing the i th strand of the dosed 

braid ~ by an arc in the plane P which joins qi to ~(qi), i f  and only if3` can be 

homotoped to intersect/~(3,) precisely in the point {x'} . 

Proof'. Suppose 3' can be homotoped to meet 37 only at x'. Composing the 

3 with a suitable homeomorphism we may assume 3, actually meets 3(3,) only 

at x'. Recall the map H: P x [0, 1] -~ II~ a from section 2.1. Consider the image 

under H of the square 3' x [0, 1]. The square has four edges: 

-Tx{0}, 3 'x{1} ,  {x}x[0 ,1]  and {qi}x[0,1].  

The map H fixes the arc 3  ̀= 7 x {0}, sends 7 x 1 to fl(3`), sends {x'} x [0, 1] 

to a small homotopically trivial loop about the axis A and sends qi x [0, 1] to 

the ith strand of the closed braid associated to fl in I~ 3 . The square describes a 

homotopy by which the ith strand can be homotoped, fixing both ends (so the 

rest of the braid is not affected) to the composite of three paths: /3(7), a small 

homotopically trivial closed loop about the axis A, and 3 .̀ You can cut out the 

homotopically trivial closed loop without affecting the homotopy type of the link 

in 1~ 3, and what remains is the original closed braid in/1~ 3 with its i th strand 

replaced by the arc 3  ̀U fl(3,) in the half plane P. This is the desired reducing 

move. The converse should also be clear, i.e. if a reducing move replaces the 

ith strand by an arc in P joining qi to l~(qi) = qj, then the arc can always be 
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deformed, in the complement of Qn, to an arc of the form ? U ~('y), where 7 

runs from x' to qi. This completes the proof of the Lemma, and so also of the 

Theorem. | 

Example: We use Theorem 2 to show that  the braid 

/~2 ---- O'220"110"210"310"30"10"20"3 

which is illustrated in Figure l(a) has a negative reducing loop. It will be clear 

later why we have named this braid ~2. We do this by exhibiting a simple 

homology class v E H1 (P~, x, MLeft) such that  (/32v*/~ -1, v) = 0. We claim that  

we can take v = [x3]x = e3. To see this, use the action given in (12) to verify 

that  /~2e3 e lv ( /~2 )  ---- el /~2,  so  that  . --1 ---- (/~2e31~ 2 , e3 )  ---- ( f l , e 3 ) ,  which is i n d e e d  

ze ro .  

Remark 1: The algebraic action of the braid /32 = 0"22 0"110"210"310"3 0"10"20"3 

on 7rl(Fn) was given in (3). This algebraic action is right to left (functional 

notation), so that  r -1 = Xl. This is opposite to the geometric action 

which is we depicted earlier, in Figure l(d). The arc we called 6' determines 

the loop xl.  We obtain from it the arc we call ~((Y) (which determines x3) by 

pushing it one full turn around the oriented braid axis, keeping its endpoint on 

/22. Thus the algebraic action is opposite in sense to the geometric action. 

Remark 2: It should be clear to the reader, from this example, that  the 

question of enumerating simple homology classes elal + e2a2 + . . .  + enan in 

H1 (P~, x, 3dleet) is the key to applying Theorem 2 to obtain an algorithm for 

recognizing reducing loops. See the discussion on open problems at the end of 

the paper. 

5. D e t e c t i n g  e x c h a n g e  moves  

Recall the conjugacy class of a closed b ra id /~  is said to a d m i t  an  e x c h a n g e  

move  if it contains a representative of the form Pan_ lQa~ l l .  

THEOREM 3: A braid/~ E Bn admits an exchange move i f  and only if  there 

are simple homology classes v ,w  E Hl (Pn,x,.A/[left) SUCh that (v*,w) = 0 and 

(V*, ~W~ -1) : O. 

Observe that  if, instead, v and w are such that  (v*,w) -- (/~v*~-i,w) =-- 0 

then 'conjugating' the second formula by ~ gives (v*, w) -- (v*,/~-lw~) -- 0. It 

follows that  v and ~-lw/~ are two simple classes satisfying the hypothesis, so 

either version implies the other. 
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Proof" The proof of Theorem 3 is very closely related to the proof of Theorem 

2. Assume that  

(v*,w) = (v*,/3w/3 -1)  = o. 

We must obtain a pair of arcs 7, 5 in Pn, with 7 based at y and 5 based at x 

such that  7 meets neither 5 nor/3(5). We have 7 ending at say qi and 5 ending 

at qj. 

We may move the basepoints y and x in P a little away from the axis hut 

still outside the range where H acts. 

We may assume that  H(p,t) = p for 0 _< t _< 1/2, and now we do two 

homotopies. By doing a homotopy within the square H(7  x [0, 1/2]), we replace 

strand i for 0 < t < 1/2 by the image under H of 

(7 x {0}) U ({q} • [0, 1/2]) U (7 x {1/2}). 

Similarly, we replace strand j for 1/2 < t < 1 by the image under H of 

(T • {1/2}) U ({r} • [1/2,1]) U (/3(T) • {1}). 

The homotopy in the second case takes place within the square H(v x [1/2, 1]). 

Now our braid contains a pair of small semicircles about the axis A, and we 

can 'interchange' the positions of the semicircles in IR 3 without affecting the 

type of the closed braid. The homotopies are then reversed and the result is an 

exchange move. 

Remark 3" An explicit way to calculate the new braid after the exchange has 

taken place is as follows: Assume that  (v*,w) = 0 and (v*,flw/3 -1) = O. 
Choose a braid ~ such that  v = [~xn-1]~ and w = [~xn]x. Choose a braid 

r such that  v = [r and/3w/3 -1 = [r Then/3 will be replaced by 
--2 - 1  2 - 1  

Example: An example is the closed 4-braid 

---- (0"220"10"21)((T3)(O'30"110"2)(O'31) ----- Pa3Qa31. 

See Figure 6. It 's an interesting example because the associated closed braid 

represents the unknot, but the closed braid does not have a reducing loop. 

However, after two exchange moves (see the right sketch) it is changed to the 

braid K which we showed earlier in Figure 1. That braid has a positive reducing 

loop. The example was discovered by Hugh Morton [26]. 

We now show that  the two exchange moves are detected by the algebra: 
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�9 The first exchange move: We need to find simple homology classes v, w E 

Hl(Pn,x, fl41eft) such that  (v*,w} = 0 and (v*,/~wl~ -1) = 0. We claim 

that  v = [xl]~ = el and 

W = [X2X4X21]x = d ( x 2 x 4 x 2 1 )  

---- d ( x 2 ) x 4 x 2 1  -~- d ( x 4 ) x 2 1  + d ( x 2 1 )  -- e2(x4 - 1)x21 + e4x21 

do the job. We have (v*, w} = (e~, w} = (f l ,  w) = 0 because the coefficient 

of el in the expression for w is zero. This is the first part of the test for 

the first exchange move. Next, a calculation gives 

/~Wf1-1 = g 2 ( x a x 2 x 3 1 x 2 1  --}- X31X2 ' -- X21) --}- ea(X2X31X21 -- x ~ l x 2 1 )  

and this does not involve el so that  

(V*,/~W/~ -1)  = (e~,/~W/~ -1} : ( f l , /~W/~-1)  ~- O. 

This shows that  there is an exchange move relating the homology classes 

v and w. If one calculates the exchange move by the remark above, one 
--2 --1 --1 3 --1 sees that  the braid/~ has been changed to ~1 = a2 al a2 a3a2ala2a3 �9 

�9 The second exchange move: Start  with the braid ~1. We consider the 

homology classes v = [xlx2x3x4x31x~lx~l]x and w = [XlX2Xax~lx~l]x. 
Note that  v* = f4 and the rule for applying the derivation d gives 

W = d (XlX2X3X21Xl  1) 

: el  (x2x3x2-1Xl  1 - -  X l  1) "~- e2(X3X2-1Xl 1 - -  x ~ - l x l  1 ) --~ e3x2-1Xl I . 

Since the coefficient of e4 in w is zero, whereas v* = f4, we have (v*,w) 

~ 0 .  

Now we calculate.(v*,~iWr 1} and this can be done most easily by 

noting that  in the action of the braid automorphism ~1 we have 

/~1 (XlX2X3X21X11 ) ---- X l X 2 X 3 X l x 3 1 x 2 1 X l  1 , 

so that 

ZlwZ  I = [x,x2xaxlx;Ix 'x 1]x. 

When we calculate this using the derivation rule we see that no basis 

element e4 occurs, because the word does not involve x4 at all. Thus 

(V~' ,~lW]~I  1) : ( f 4 , ~ l W ~ l  1) : 0. 
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When we calculate the new braid we obtain a braid f12 which differs from 

fll in tha t  the a3 crossings have been reversed. The result f12 is the braid 

in Figure 1, and, as we have already seen in the example in Section 4, this 

braid satisfies , -1 (/32e3fl 2 , c3) = 0 so it admits a reducing move to a braid 

on three strands only. 

(i) 

(3) 0; 2 5 ~ ~ (523 o,"(52 (53" = 4- ,raid (4) 

exchange move 
and braid isotopy 
reduce braid 

length 

(2) 

two exchange 
moves reveal 
reducing 
loops 

P - ~ , _  . . . . . . . . . . .  

ttjY- 
O"22 (5-1(5-_11 2 G-1(533 2 (51 (52 (53 = 4-braid 

delete first 
reducing 

loop 

(5) 

\ 
I -] de,etesecond 
~~,~~,~,~~]~,~ Ao ~[~ reducing loop �9 

-2 3 01020102 (31 -- 3-braid (6) ~i e ~1 ~3~11 = 2-braid 

simplify t 
(7) G1 = 2-braid 1-braid 

I delete third t reducing loop 

(8) 

Figure 6. In this closed braid representative of the unknot two ex- 

change moves are needed before the reducing loop on the right (which 

is the same as that  in the left sketch in Figure 1) is revealed. 
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6. D e t e c t i n g  i n t e r s e c t i o n s  v ia  m a t r i x  e n t r i e s  

In this section we'll explain exactly what it means for a matrix entry to be zero, 

and look at the corresponding very special cases of the reduction and exchange 

move conditions. These are weaker than Theorems 2 and 3. Using the notation 

set up above, with the basis e l , . . .  ,en of Gei34 and basis f l , . . . ,  fn of •34fi ,  

recall the intersection pairing which we defined in equation (17). Let ti E 34 

be the element 

t i = T ( X l ' ' ' X i )  - -  T ( X l . . . X i _ I ) .  

(Here we use the representation ~- : Bl ,n ~ 34 as a method to view any element 

of Bn or Fn as belonging to 34.) 

If fl E Bn is a braid then the image of/~ under our matrix representation of 

Bn is the matrix (rij) E GLn(34) defined by 

(19) /~ej = e l r l j  + "" �9 + e n r n j .  

First we shall explain exactly what it means for a matrix entry rij to be zero. 

Recall if we take 34 to be the Magnus matrix ring then each element of 34 is 

an n + 1 by n + 1 matrix with entries in Z[q,q- l , t , t -1] ,  so that  (rij) can be 

thought of as a matrix whose entries are n + 1 by n + 1 blocks. 

LEMMA 6.1: The matrix entry rij is zero if and only i f  3 = bc, where strand i at 

the top only makes undercrossings in b and strand j at the bottom only makes 

overcrossings in c, and these are two distinct strands. In other words, i f  and 

only i f 3  = ai+lai+2"'" an- l  PcVnllQcrn-lCrn-2".'cTj+l for some P, Q E B ~ - I .  

Proof: We calculate 

(20) (f~, ~ej) = tirij. 

If rij = 0 this means that  

(21) Ze ) = o. 

Since ti is a nonzero divisor it follows that  (21) is equivalent to rij : O. 

As usual, let x~ be the loop at the basepoint x which encircles qj in the 

simplest possible way, so that  ej = [Xj]x is the homology class of xj.  Prom the 

formulas given earlier we have 

[Zxj]= = Z[xj] Z -1  
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Thus we have 

(22) 

(fi, [~Xj]x) ---- (f/,/~ej/~ -1)  ----(f/,/3ejT(/3) -1 )  ---- (f/ ,  fl(?j)T(/3) -1  • tirij'r(/3) -1 �9 

Since ti and v(/3) are not zero-divisor elements of M we see rij -- 0 if and only 

if 

(23) [Zxj]x) = 0. 

Now fi itself is the homology class of an arc Yi based at y whose homotopy class 

is yi. This is an arc which encircles only qi but it goes around to the left, and 

comes in from the top, and is oriented clockwise. Also, the arc xj is based at 

x and encircles qj anticlockwise. The reason for this difference in orientation is 

that  the basis elements of |  (resp. GeiA4) are the fi 's  (resp. el's), which 

correspond to clockwise (resp. anticlockwise) loops based at y (resp. x). 

Now since fi = [Yi]y, we see from Theorem 1 that  (23) is equivalent to the 

assertion that  Yi can be homotoped off ~(xj) .  

Since/~(xj) does not now meet Yi then the word/3(xj) in the free group does 

not involve the letter xi. Tha t  means the braid/~ can be factorized bc so that 

strand j at the bot tom only has overcrossings in c and strand i at the top only 

undercrossings in b. To see this, consider /3 applied to straight arcs from a 

basepoint r to the qs. The motions of the qs are approximated by letting the 

qs move out along these arcs from the basepoint to their final positions. Now 

parametrize the j t h  arc slower than the others, so in the early part  of the braid 

qj is in front of all other points (nearer the basepoint). This gives the c part of 

the braid. And for a second interval of time only qj moves and this never moves 

behind qi. This gives the b part  of the braid. | 

Now we can give the corollary describing how to recognize exchange moves 

and reducing moves by looking at a single matrix entry. Of course this is much 

weaker than Theorems 2 and 3, because there we find reducing moves and 

exchange moves anywhere in the conjugacy class, but we include this result as 

it was the first one which we noticed. 

COROLLARY 1 : 

1. The matrix entry rn,n-1 iS zero i f  and only if/3 = PcrnllQan_ 1 for some 

P, Q E Bn-1.  In this case ~ admits an exchange move which replaces it 

by Oanl_tpan_t.  

2. The matrix entry rn,n IS zero if and only if  ~ = pa~ laQ for some P,Q r 

Bn-1.  In this case/3 admits a reduction move replacing it by QP. 
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Proof: Apply the lemma first in the special case j = n - 1 and i = n. This 

shows ~ is of the form Pan11Qan_1. If i and j are both equal to n then 

3 = Pan11Q, and this proves the corollary. | 

But Theorems 2 and 3 show there is nothing special about the loops 7 and 5 

in the proof of the lemma. Any pair of disjoint simple loops would give rise to 

an exchange if the transform of one (based at x) doesn't meet the other (based 

at y). 

Thus, what we have accomplished is to generalize a sort of naive notion about 

matrix entries into a result giving effective obstructions for reduction or ex- 

change. 

7. Quest ions,  comments  and conjectures 

We end this paper by discussing the things we have not been able to do, 

mentioning some conjectures and open problems. 

1. A conjecture: Theorem l(e) gives a necessary condition for a homology 

class [w]x E HI (Pn, x, 3,t) to be represented by a simple arc. We conjec- 

ture that there is a series of finite-dimensional representations r: Bl,n 
34 satisfying the conclusions (a) through (f) of Theorem 1, for which this 

condition is sufficient as well as necessary. It is even possible that the 

condition is sufficient in the special case which we discussed in section 2.3. 

2. An important question: Theorem 1 imposes necessary conditions which 

an element ~ E Gln(34) must satisfy if ~ is to represent a braid. Namely, 

for any homology class v E 0ei34 we define flv by the ordinary action, 

and we can define v*3 by the rule 

V*~ : (~ - - lv )* .  

Then in order to represent a braid, ~ must satisfy (v*3, w) = (v*, 3w) 

for all v, w. Secondly, the special homology class u = [XlX2.." Xn]x must 

satisfy ~u = uT(~). It would be interesting to know what other elemen- 

tary algebraic conditions characterize the set of matrices which represent 

braids. The more completely this question can be answered, the closer 

one comes to finding an algebraic description of the set of simple homol- 

ogy classes, which in view of Theorems 2 and 3 is all that is needed to 

immediately recognize whether a braid admits an exchange or reducing 

move. 

3. A comment: Since (v*, flVf1-1) • (V*, ~3V)f1-1 , the condition which is given 

for recognizing a reducible braid, in Theorem 2, is equivalent to the ap- 
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patently simpler condition (v*,~v I = 0. However, the more complicated 

condition has the advantage that  the homology class flv~ -1 is simple if 

and only if v is, and the theorem is an assertion about simple homology 

classes, so we prefer the version we have stated. 

4. A question: One may construct a representation To: Bl,n ~ M which 

describes the action of Bl,n on the Laurent polynomial ring 

R = z [ T } I , . . . ,  TZ']. 

The generator ai acts by permuting Ti and T i + l  while the generator xl 

acts by multiplication by Ti and AJ is taken to be the endomorphism 

ring of R as a module over the subring of symmetric polynomials. The 

matrix entries rij of the T + representation are elements of R composed 

with substitutions which permute the variables. Does the equation rn,n : 

0 characterise braids of the special reducible form Panl_lQ of Section 4? 

5. A comment: When the f14 are matrix rings A4 = End(V) the bilinear form 

of Theorem 1 can be defined on the actual representation V | V |  | V 

rather than a sum of matrix rings. Let e E A4 be such that  V = f14~ occurs 

as a principal left ideal. Then the bilinear form on | x •eiA4e is 

defined by the formula (~*v, we> = e* (v, w>e. 

6. A comment: The bilinear form we have constructed in this paper is 

symmetric in the sense that  (v, w} = (w*, v*>. 

7. A comment: In our survey paper [9], jointly with Darren Long, we stated 

without proof the following result generalizing both [25] and [21]: 

LEMMA 7. l (Lemma 2.6 of [9]): Suppose the representations T of B~ are 

not all faithful. Then for all but finitely many values of n the represen- 

tation T + of Bn is faithful i f  and only i f  the monodromy representation 

Fn C Bl,n Z~ AJ defines an effective intersection theory for arcs in Pn. 

D. Long has proven the lemma for nonabelian monodromy and cap prod- 

ucts [20]. In Theorem 1 we establish the Lemma, interpreting the intersec- 

tion form as intersections of two arcs in Pn based at two different points 

x, y on the braid axis. The non-degeneracy of the intersection pairing is 

similar to Deligne's non-degenerate form on cohomology described in [20]. 

8. A comment: When AJ has an anti-involution * compatible with T, as 

required by the hypotheses of Theorem 1, it is also true in turn that  the 

ring Math(A4) of matrices over Ad has anti-involution compatible with 

T +. This is defined such that  a matrix B is sent to the matrix B'  such 

that  (Bf~)* = f iB '  for all i. The process of passing from T to T + may 
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. 

then be iterated, obtaining T ++ and so on, and the conclusions of Theorem 

1 are retained at each stage. Although one now knows that  the question 

of faithfulness is resolved at the first stage, our conjecture 1 above allows 

the possibility of a further 'augmentation' before it may be expected to 

be true. 

Our final remarks deal with the relationship between Theorem 1, part (f), 

and Bigelow's 'Key Lemma' (Lemma 3.1 of [2]). Our theorem applies to 

any representation ~- for which 7- + is faithful, whereas Bigelow's original 

proof involves counting monomial degrees in one particular representa- 

tion. Our theorem in some sense generalizes Bigelow's Key Lemma to the 

cases where we specialize the parameters q and/or  T to values for which 

faithfulness is known. For example, by [18] we could specialize q to any 

real number between 0 and 1. It might be worthwhile to prove this im- 

plication (i.e. that  Krammer's work implies a generalization of Bigelow's 

Key Lemma) more precisely. 

Continuing: we interpret the intersection form as intersections of two loops 

on the plane P based at distinct points. The same formula generalizes to 

any pair of 'noodles.' For the geometric applications, in the special case 

34 is taken to be the Magnus representation, it would suffice to directly 

use Bigelow's lemma in place of our part (f) by replacing n by n + 1 and 

approximating one of our arcs by a noodle and the other by a fork leading 

to the extra point qn+l. 

Finally, the homology classes we consider are the ordinary (first) homol- 

ogy classes of our arcs, but with coefficients in a noncommutative ring. In 

this theory the self-intersections of an arc are interesting. 
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